

Unitary Thermal Energy Management for Propulsion Range Augmentation (UTEMPRA)

Project P.I.: Sourav Chowdhury Project Manager: Mark Zima

Delphi Automotive Systems, LLC
June 10, 2015

Project ID:VSS157

Overview

Timeline

Start Date: October 1, 2014 End Date: September 30, 2017

» Percent Complete: 12%

Barriers

Severe Range Penalty of GCEDVs in Cold Weather (up to 40% range reduction at -10°C)

- Resistive heating is the typical heat source for passengers and battery – low-efficiency (COP<1.0) & significant drain on battery
- Must reduce customers' range anxiety for greater GCEDV acceptance

Budget

Award No.: DE-EE0006840

Contract Value (80/20):

\$ 3,170,379

Gov't Share (with National Lab)

\$ 2,536,303

Delphi Team Share (with National Lab) \$ 634,076

Partners

Relevance and Project Objective

Overall Objective

UTEMPRA targets to **increase 15% BEV drive range at -10°C** with equivalent cabin comfort

- Scavenge waste heat from electronics and electric motor
- Provide thermal management to all power components
- Implement a simplified A/C and Heat Pump System with flexible coolant-based distribution
 - Coolant-based system can be synergized with with other energy-saving technologies (e.g. PCM-based thermal storage)
- Demonstrate technology for a 2015MY BEV with an OEM partner (FCA) to calculate energy benefit. Develop system for mass production by 2020. Bring project TRL from 3 to 7

Specific Annual Objectives

- □ Budget Period 1 (Oct. 1st -14 to Oct. 31st -15): Technology Development Phase
 - » Program management & sub-contracts with partners
 - » Review vehicle requirements & develop system specification, explore vehicle packaging
 - » Instrument & test baseline vehicle to set performance targets
 - » Design system components (Heat exchangers, Compressor, Valves, Pumps)
 - » Develop flux-less braze equipment specification & order equipment (long-lead)
 - » Develop Matlab-Simulink system model to study Baseline and UTEMPRA systems

Approach – Baseline BEV System

2015MY Fiat 500e BEV

- Cooling: Traditional Direct A/C System Heating: PTC (Resistive) Heater (qty. 2)
- Thermal Conditioning of Battery, Power Electronics and Cabin are independent
- Two PTC (Resistive) Heaters for the Cabin and Battery - significant drain on the battery
- Relatively simple control but no heat recovery/thermal optimization applied

2015 Fiat 500e Thermal Management System

OBC – On-board Charger

EM – Electric Motor (Vehicle Propulsion)

PE - Power Electronics (Inverter)

Approach – UTEMPRA System

UTEMPRA Benefits

- Compact refrigerant sub-system generates heating and cooling – continuously available and deployable
- Coolant architecture enables heat scavenging improved fuel economy
- Coolant-based heat pump system is more simple and more flexible vs. refrigerant-based heat pump systems
- Significant refrigerant savings (est. 50% vs. ref. based heat pump systems) – cost and environmental benefit

Approach – Milestones

Date	Milestone	Status
Nov-14	Milestone 1: Rough Vehicle Packaging Study	Complete (Dec-15)
Feb-15	Milestone 2: System Specification	Complete (Mar-15)
Apr-15	Milestone 3: Component Design	Est. May-15
Jul-15	Milestone 4: Proof-of-Concept (POC) Manifold and Valve Design	On Track
Oct-15	Milestone 5 and Go-No-Go 1: POC Manifold and Valve Build	On Track

Approach – Activity Flow/Timeline

Status (as of April 10th): approximately 1 month behind baseline schedule

Technical Accomplishments – Preliminary Vehicle Packaging Study

500e Top View

UTEMPRA Packaging

- Very compactly packaged baseline vehicle under-hood
- Main UTEMPRA components are: Refrigerant-subsystem, Multi-mode Flow Controller (MMFC), Front-end Heat Exchanger
- □ Some existing components (12V battery, fuse box, electrical lines etc.) will be relocated to accommodate UTEMPRA components

Technical Accomplishments – Baseline Testing & Specification Creation

Baseline Fiat 500e Testing Highlights

- R134a refrigerant (production) changed to R1234yf for UTEMPRA system
- □ FCA-provided iBox used to read vehicle CAN data traffic Battery internal temperature, power draw etc.
- Heating and Cooling performance targets set based on FCA test procedures
- Automatic Climate Control (ACC) tests conducted to understand vehicle controller behavior

ACC Heating: -10°C, 0°C, 20°C ACC Cooling: 25°C, 35°C, 43°C

Technical Accomplishments – Coolant System Architecture

Proof-of-Concept (POC) Coolant System

- □ Total of 22 modes identified encompassed all thermal functions in baseline vehicle plus heat pumping and heat scavenging
- POC MMFC design provides flexibility for technology development. Further refinement/consolidation of architecture planned in BP-2

Technical Accomplishments - Braze

Concerns/issues with traditional brazing that require fluxing:

- Because of compact design and internal braze surfaces residual flux will be present
 - » Coolant may react with residual flux producing corrosive by-products.
 - » Potential Safety Issue for battery and PEEM coolant circuits!
- Difficult to limit internal flux for laminated heat exchangers (multiple large heat exchangers)
 - » Possibility of product defect
 - » Cost

Flux-less brazing material solves these issues by eliminating fluxing

» Need to develop material and braze process

UTEMPRA Laminated Heat Exchangers

Sectional View of Laminated Heat Exchangers

Technical Accomplishments – Braze Furnace

- ☐ Flux-less material requires specific furnace environment to prevent the oxide layer from re-forming
 - » Desired O₂ levels approximately10-15 ppm
 - » Furnace must be clean and free from contamination from brazing traditionally fluxed products
- □ Existing production furnaces do not provide necessary <u>braze zone height</u>, <u>cleanliness</u> nor <u>purity of environment</u>
 - » UTEMPRA heat exchangers have large height and requires taller muffle of furnace
 - » Developmental furnace is required and included in this project
- Sourcing and ordering furnace equipment has a long lead time
 - » Equipment to be ordered in May, 2015
 - » Equipment delivery December, 2015

Similar 5-Zone Furnace

UTEMPRA Furnace Plan

Technical Accomplishments - Modeling

Modeling Objectives:

- Create Baseline and UTEMPRA <u>system</u> & <u>vehicle</u> model
- Analyze system behavior to understand control system design requirements
- Understand impact of changes in component design

Achievements:

- Matlab-Simulink-based Model has been initiated in February 2015 and is on-going
- Preliminary UTEMPRA model has been initiated.
 Detailed work on this model will occur in BP-1 (2nd half)

UTEMPRA Model under development

Response to Previous Years Comments

N/A as this project is new

Collaboration/Coordination with Subrecipients

- □ FCA Fiat Chrysler Automobiles (formerly Chrysler Group LLC), Auburn Hills, MI
 - Responsible for providing BEV, packaging information, HVAC & PTC algorithm understanding and access
 - Responsible for vehicle range verification tests
- □ Norgren, Inc. division of IMI (Farmington, CT)
 - Design and develop MMFC (Multi-Mode Flow Controller)
 - Goal of commercially viable product
- □ NREL National Renewable Energy Laboratory, Golden, CO
 - Responsible for thermal model of Unitary HPAC System
 - Responsible for vehicle thermal model
 - Bench test of the UTEMPRA system
- Coordination is accomplished through bi-weekly team meetings working from master timeline
- Separate collaboration sessions by teleconference
- □ Site visits/workshops planned in 2nd half of BP-1 onwards

Remaining Challenges and Barriers

- Challenge 1: Design and validate a Multimode Fluid Controller (MMFC) "heart" of coolant network
 - Control all operating modes successfully
 - Meet mass & packaging
 - Make product commercially viable
- ☐ Challenge 2: Develop a braze recipe for flux-less braze materials
 - Minimize coolant contamination to protect battery and other sensitive HV components
 - Outline critical parameters for flux-less material braze
 - Identify possible braze issues in production
- □ Challenge 3: Integrate UTEMPRA system with existing ESS, PEEM and HVAC components in the Fiat 500e vehicle
 - Understand system compatibility issues (hardware/software) and control requirements of vehicle
 - Control UTEMPRA while communicating with the vehicle bus
 - Ensure safe operation of the vehicle with new (UTEMPRA) system
 - Determine drive cycles to best demonstrate the impact of UTEMPRA (SAE J1643 Recommended Practices available)

Future Work

- □ Budget Period 1- Remainder (Apr. 10th to Oct. 31st -15): Technology Development Phase
 - » Design system components (Heat exchangers, Compressor, Valves, Pumps)
 - » Develop flux-less braze equipment specification & order equipment (long-lead)
 - » Develop Matlab-Simulink system model to study Baseline and UTEMPRA systems
- □ Budget Period 2 (Nov. 1st -15 to Oct. 31st -16): System Development Phase
 - » Braze Equipment Qualification
 - » Component Tooling and Build
 - » Component and System Tests
 - » Prototype MMFC build and Test
- □ Budget Period 3 (Nov. 1st -16 to Sep. 30th -17): Technology Deployment Phase
 - » Vehicle Controls Development Software/Hardware
 - » Durability Validation of Components
 - » Manufacturing Plan and Cost Estimation
 - » Vehicle Build with final components
 - » Vehicle Wind Tunnel and on-road testing
 - » Final Technical Analysis, Reporting, Vehicle Delivery to DOE

Summary of Key Achievements

- □ Established packaging feasibility and sizing guideline for UTEMPRA components
- □ Vehicle requirements, battery/power inverter thermal management logic and baseline vehicle testing together provided UTEMPRA requirements. Specification document (ver. 1) established.
- Coolant system architecture established. This provides design inputs for MMFC design and captured in MMFC Specification document.
- □ Braze furnace specification completed. Quotation is in process. Delivery and braze process qualification is a long lead time task.

